Noise Functions
$$G(x, y) = \sum_{i=0}^{n} \left(w_i \cdot \mathrm{grad}(p_i, x, y)\right)$$
\( G(x, y) \) – noise value at point \( (x, y) \)
\( w_i \) – weight
\( \mathrm{grad}(p_i, x, y) \) – dot product of the gradient at grid point \( p_i \) toward \( (x, y) \)
\( n \) – number of surrounding grid points
$$V(x, y) = \min_{p_i} \left(d(p_i, (x, y))\right)$$
\( V(x, y) \) – noise value at point \( (x, y) \)
\( p_i \) – randomly placed points
\( d(p_i, (x, y)) \) – Euclidean distance between \( p_i \) and \( (x, y) \)
$$S(x, y) = \mathrm{interp}\left(v_i, w(x - x_i, y - y_i)\right)$$
\( S(x, y) \) – value noise at point \( (x, y) \)
\( v_i \) – random value assigned to grid point
\( w \) – interpolation/smoothing function
\( \mathrm{interp}(...) \) – interpolation between values
$$ \begin{aligned} L(x, y) = w_G \cdot G(x, y) + {} \\ \quad w_V \cdot V(x, y) + w_S \cdot S(x, y) \end{aligned} $$
\( L(x, y) \) – combined noise value
\( w_G, w_V, w_S \) – weights for each component
\( G(x, y), V(x, y), S(x, y) \) – respective noise values

Duszekjk Jacek Kałużny

Cookies
This website uses cookies because it is a website