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Statistics

• English believe 24% of their population are Muslim  reality 
5% 

• Saudis believe 28% of their population are overweight  
reality 71% 

• Japanese believe 56% of their population live in the countryside 
 reality 7%
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Why statistics?

• English believe 24% of their population are Muslim  reality 
5% 

• Saudis believe 28% of their population are overweight  
reality 71% 

• Japanese believe 56% of their population live in the countryside 
 reality 7% 

Source Ipsos MORI



Statistical inference

• Use data from a sampling measurement to infer information 
which is generally applicable



Example: drug testing

• 50 patients received new pain medication whereas a similar 
group of 50 patients were treated with older medication. Mean 
scores of perceived pain were 4.1 for the new medication and 
4.5 for the old.



Example: drug testing

• Statistical inference addresses: 

– How can we estimate the difference of the effect of medication? 
– How can we quantify the precision of that estimate?



Statistical inference

• Effect size: the quantification of an effect, e.g. in the simplest 
case a single number  

• Confidence interval and/or the standard error: the precision of 
the quantification (estimate)



http://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html


Standard deviation

, std =  𝜎2 =
1

𝑁 − 1

𝑁

∑
𝑖=1

(𝑥𝑖 − 𝜇)2 𝜎

http://docs.scipy.org/doc/numpy/reference/generated/numpy.std.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.std.html


Assessing variance with standard deviations



Comparing distributions

• Difference of means: e.g. mu1 – mu2
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Comparing distributions

• Overlap of distributions



Computing overlap

• Define a threshold between the means of the distributions: 
– thres = (std1 * mu2 + std2 * mu1) / (std1 + 
std2) 

threshold



Computing overlap

• Compute number of data points below threshold: 
sample1_below_thres= sum(sample1 < thres) 
sample2_above_thres= sum(sample2 > thres)

sample1_overlap = sample1_below_thres / len(sample1)
sample2_overlap = sample2_above_thres / len(sample2)

misclassification_rate = (sample1_overlap + 
sample2_overlap) / 2
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Computing overlap

• Compute number of data points below threshold: 
sample1_below_thres= sum(sample1 < thres) e.g. 100
sample2_above_thres= sum(sample2 > thres) e.g. 200

sample1_overlap = sample1_below_thres / len(sample1)
sample2_overlap = sample2_above_thres / len(sample2)
e.g. 0.2 and 0.3 (20% and 30%)
misclassification_rate = (sample1_overlap + 
sample2_overlap) / 2



Computing overlap

• Compute number of data points below threshold: 
sample1_below_thres= sum(sample1 < thres) 
sample2_above_thres= sum(sample2 > thres)

sample1_overlap = sample1_below_thres / len(sample1)
sample2_overlap = sample2_above_thres / len(sample2)

misclassification_rate = (sample1_overlap + 
sample2_overlap) / 2



Example misclassification rates

~0.05 ~0.2 ~0.99



Histogram vs density distribution function

Normal distribution function (mu, std)
Histogram of data sample



Gaussian/Normal Distribution Function



Statistics: scipy.stats

• Over 80 continuous 
distributions

pdf 

cdf 

Rvs 

ppf 

fit 

var 

Mean 

std



Statistics: scipy.stats

• 10 discrete 
distributions

pdf 

cdf 

Rvs 

ppf 

fit 

var 

Mean 

std



Stats objects



Stats objects



Mean of sample means

Sample a 100 random variable array 1000 times and plot the 
means as a histogram



Confidence interval

np.percentile( sample, [ 2.5, 97.5 ] ) 
array([-0.0496105 ,  0.05035856])

Lower Confidence Limit Upper Confidence Limit



The sample mean std is the standard error

Sample a 1000 random variable array 1000 times and plot the 
means as a histogram: standard deviation ~0.03 (vs. ~0.1 for the 
100 samples simulation)

100 samples 1000 samples



Statistical inference

• Effect size: means, standard deviations, overlaps 
• Precision: Confidence interval and/or the standard error
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Multivariate data samples (covariance)?

Variance in weight = 35.0

Variance in height = 36.9

𝜎2(𝑥, 𝑦)
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Covariance definition

Σ = [
𝜎2(𝑥, 𝑥) 𝜎2(𝑥, 𝑦)
𝜎2(𝑥, 𝑦) 𝜎2(𝑦, 𝑦)]

𝜎2(𝑥, 𝑦) =
1
𝑁

𝑁

∑
𝑖=1

(𝑥𝑖 − 𝜇𝑥)(𝑦𝑖 − 𝜇𝑦)



Example Covariance Matrices

Σ = [5 4
4 5] Σ = [9 0

0 1]

Σ = [1 0
0 9] Σ = [ 5 −4

−4 5 ]



Normal distribution

𝜎2(𝑥, 𝑦) =
1
𝑁

𝑁

∑
𝑖=1

(𝑥𝑖 − 𝜇𝑥)(𝑦𝑖 − 𝜇𝑦)



Scaling by 3 times in x-direction?



Scaling by 3 times in x-direction?

𝑆 = [3 0
0 1]



Scaling Transformation Matrix

𝑆 = [3 0
0 1]

𝑆 = [
𝑠𝑥 0
0 𝑠𝑦]



Eigenvectors

𝑆 = [3 0
0 1]

𝑆 = [
𝑠𝑥 0
0 𝑠𝑦]

𝒗𝟏

𝒗𝟐



Covariance and Data Transformation

𝑆 = [3 0
0 1]

𝑆 = [
𝑠𝑥 0
0 𝑠𝑦]

𝒗𝟏

𝒗𝟐

Σ = [9 0
0 1] = 𝑆2



Rotation Transformation

𝑅 = [cos(𝜃) −sin(𝜃)
sin(𝜃 cos(𝜃) ]

𝒗 𝟏

𝒗 𝟐



Covariance as Linear Transformations

𝑅 = [cos(𝜃) −sin(𝜃)
sin(𝜃 cos(𝜃) ]

𝒗 𝟏

𝒗 𝟐

Σ𝑣 = 𝜆𝑣

Σ𝑉 = 𝐿𝑉

Σ = 𝑉𝐿𝑉 −1

Σ = 𝑅𝑆𝑆𝑅−1
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𝑅 = [cos(𝜃) −sin(𝜃)
sin(𝜃 cos(𝜃) ]

𝒗 𝟏

𝒗 𝟐

Σ𝑣 = 𝜆𝑣
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Covariance as Linear Transformations

𝒗 𝟏

𝒗 𝟐
𝒗𝟏

𝒗𝟐 SR

Σ Σ′￼= 𝑅𝑆𝑆𝑅−1



Covariance as Linear Transformations

𝒗 𝟏

𝒗 𝟐
𝒗𝟏

𝒗𝟐 (SR)-1

Σ Σ′￼= 𝑅𝑆𝑆𝑅−1



Covariance as Linear Transformations

𝒗 𝟏

𝒗 𝟐
𝒗𝟏

𝒗𝟐 (SR)-1

Σ Σ′￼= 𝑅𝑆𝑆𝑅−1

Eigendecomposition 
S2 = L, R = V



http://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.corrcoef.html


http://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.cov.html
http://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.cov.html
http://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.cov.html






Dot Broadcasting



Exercise

• Generate 100 random points sample from a normal distribution (mu=3.0, 
sigma=1.0) and visualize them as a histogram. 

• Generate 100 random points sample from a normal distribution (mu=1.0, 
sigma=2.0) and visualize them together with the previous histogram as a 
histogram. 

• Calculate the misclassification rate for these two distributions. 
• Fit a normal distribution function to the first data set. 
• Generate 100 times 100 random points sample from a normal distribution 

(mu=3.0, sigma=1.0). Create a histogram of the means and calculate the 
standard error. 

• Repeat the previous point 1000 times instead of 100. How does the standard 
error differ?



Exercise

• Create a bivariate distribution of 1000 points (normal with mu=1, 
sigma=1) and visualize it as a scatter plot. You should see a point cloud 
centered around the origin. 

• Apply a transformation along the x-axis via a scaling matrix that 
stretches the point cloud of data by a factor 3 and visualize the points 
again. 

• Rotate the point cloud by 45 degrees “up” using a rotation matrix. 
• How can you apply both transformations (scaling and rotating) in a 

single transformation?  
• Compute the correlation coefficient for the transformed data set.



Exercise

• Calculate the covariance matrix of your transformed bivariate 
data sample. Compute the eigendecomposition of the 
covariance matrix. Compute the inverse of the transformation 
matrix by multiplying eigenvalues with the matrix composed of 
both eigenvectors (don’t forget to take the square root of the 
eigenvalues) and transform your data set with it. Plot the 
transformed data as a scatter plot, you should see a similar 
point cloud to the original one again (without the stretch and 
rotation).





Dimensionality Reduction

𝒗 𝟏

𝒗 𝟐



Dimensionality Reduction

𝒗 𝟏

𝒗 𝟐



Dimensionality Reduction

𝒗 𝟏
Projection of data on largest eigenvector



Data Model

gradient = 1, offset = 0



Data Model

mu = 0.05, sigma = 2.91gradient = 1, offset = 0



Data Model

mu = 0.05, sigma = 2.91gradient = 1, offset = 0

Describe data set of 2000 points with just 4 numbers!



Principal component analysis (PCA)

• Reduce dimensions of data sample by projecting onto a lower 
dimension (while preserving the high variance information)

3D



Principal component analysis (PCA)

• Reduce dimensions of data sample by projecting onto a lower 
dimension (while preserving the high variance information)

3D 2D



10-Dimensional case



PCA Algorithm

• Input: Data X of sample size N 
• Output: k principal components 
• Centering: Subtract mean from data 
• Scaling: Scale each dimension by its variance 
• Compute covariance matrix C 
• Compute k largest eigenvectors of C (alternatively calculate 

SVD)



PCA Algorithm

• Input: Data X of sample size N 
• Output: k principal components 
• Centering: Subtract mean from data 
• Scaling: Scale each dimension by its variance 
• Compute covariance matrix C 
• Compute k largest eigenvectors of C (alternatively calculate 

SVD)

Describes only linear relations in data set!



Sklearn.PCA

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html


Exercise

• Visualize measurements of the 
flowers of ludwiga octovalvis on 
a 3D plot. Compute the means 
and the covariance matrix as 
well as the correlation matrix – 
what can you say about the 
relations of the 3 parameters: 
sepal length, petal length and 
sepal width?

https://wp.faculty.wmi.amu.edu.pl/PCAdata.txt


Exercise

• Calculate eigenvectors and eigenvalues of the covariance 
matrix. Visualize the vectors originating at the data mean 
(code). To reduce the dimensionality of the data from three to 
two dimensions what subspace will preserve most information?

https://wp.faculty.wmi.amu.edu.pl/AGS.py
https://wp.faculty.wmi.amu.edu.pl/AGS.py
https://wp.faculty.wmi.amu.edu.pl/AGS.py


Exercise

• Project the data from 3D to 2D and 
visualize the result on another plot 
(multiply the data with a 3x2 matrix 
constructed from the two largest 
eigenvectors – alternatively use SVD). 
Compare your results to the PCA 
method from the module 
matplotlib.mlab or sklearn. 



Exercise

• Which principal components explain summarily more than 90% 
of the variance of this multivariate data set?









Exercise

• Download the file populacje.txt which contains 
population numbers of hares, lynxes and carrots 
in a given time range. Calculate the population 
means as well as standard deviations of the 
populations; print out the year in which each 
species had its greatest population size; for each 
year which species had the greatest population 
size; in which years which species had a 
population size of more than 50,000; create a 
plot of the differences in the populations of the 
hares, as well as the populations of hares and 
lynxes – calculate the correlation coefficients 
between the differences of the population 
numbers and the population graph of the lynxes.

https://wp.faculty.wmi.amu.edu.pl/populacje.txt




Exercise

• Create a random data sample using two normal distribution 
functions (mu, sigma = (0.0, 1.0) and (2.0, 0.8)). Calculate the 
kernel density estimation of this distribution. Draw the 
histogram of the data sample and the KDE.



Exercise

• For different pairs of data samples (of two independent 
variables) calculate and draw the KDEs on a graph as well as 
test whether the means are significantly different. Test the zero 
hypothesis for each distribution: the mean is equal to 0 
(stats.ttest_1samp).

https://wp.faculty.wmi.amu.edu.pl/rozklady.npz
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_1samp.html


Exercise

• Download the file containing 3 
data samples (in separate 
rows). Create a box plot just like 
in the image to the right. Use 
the function plt.bar() and the 
parameter bottom.

https://wp.faculty.wmi.amu.edu.pl/dataBar3D.npy
https://wp.faculty.wmi.amu.edu.pl/dataBar3D.npy
https://wp.faculty.wmi.amu.edu.pl/dataBar3D.npy


Exercise

• Create a 3D box plot using the 
data from the previous exercise 
(visualize only one data 
sample). Use the function 
Axes3D.bar(x, y) and the 
parameter zdir.



Exercise

• Use the functions 
Axes3D.bar(x, y, z) and flatten() 
to change the box plot to the 
one on the right. Use the color 
map jet and apply it direction of 
the y-axis.



Exercise

• Use the functions 
Axes3D.bar3d(), flatten()  and 
the parameter alpha to change 
the box plot to the one on the 
right.



plt.bar()

http://matplotlib.org/mpl_toolkits/mplot3d/api.html


plt.bar()

http://matplotlib.org/mpl_toolkits/mplot3d/api.html
http://matplotlib.org/examples/pylab_examples/bar_stacked.html


Axes3D.bar()

http://matplotlib.org/mpl_toolkits/mplot3d/api.html
http://matplotlib.org/examples/mplot3d/bars3d_demo.html


Axes3D.bar()

• Axes3D(plt.gcf()).bar(x, y, z) 

http://matplotlib.org/mpl_toolkits/mplot3d/api.html


Axes3D.bar3d()

http://matplotlib.org/mpl_toolkits/mplot3d/api.html
https://pythonprogramming.net/3d-bar-charts-python-matplotlib/


Axes3D.bar3d()

• Axes3D(plt.gcf()).bar3d(x, y, z, dx, dy, dz) 

• All arrays have to be 1D!

http://matplotlib.org/mpl_toolkits/mplot3d/api.html


Custom distribution functions



Testing statistical hypotheses



Statistical testing example

from scipy.stats import ttest_ind

data1, data2 = ...

stat, p = ttest_ind(data1, data2)

If we observe a large p-value, for example larger than 0.05 
or 0.1, then we cannot reject the null hypothesis



Summary

• Reduce dimensions of data 
• Statistical inference (assess event size, quantify error, compare 

to random process) 
• Create (regression) models of statistical data



Exercise

• Approximate the data points x and y with a polynomial 
(minimizing the least squares error): linear, quadratic, 10th 
order. Visualize the data points on a graph and draw the 
approximations.

https://wp.faculty.wmi.amu.edu.pl/x.npy
https://wp.faculty.wmi.amu.edu.pl/y.npy


Covariance



Scaling in x-direction?

Σ = [5 0
0 1]


